Artificial General Intelligence

Yorumlar · 193 Görüntüler

Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or exceeds human cognitive abilities across a large variety of cognitive tasks.

Artificial basic intelligence (AGI) is a type of synthetic intelligence (AI) that matches or goes beyond human cognitive capabilities across a vast array of cognitive jobs. This contrasts with narrow AI, wiki.snooze-hotelsoftware.de which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that considerably goes beyond human cognitive abilities. AGI is thought about one of the definitions of strong AI.


Creating AGI is a main objective of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 study recognized 72 active AGI research study and advancement projects across 37 countries. [4]

The timeline for attaining AGI stays a subject of ongoing debate amongst researchers and professionals. As of 2023, some argue that it may be possible in years or years; others maintain it may take a century or longer; a minority think it might never ever be attained; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed concerns about the quick development towards AGI, suggesting it might be attained sooner than numerous anticipate. [7]

There is debate on the exact definition of AGI and relating to whether modern-day large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical subject in sci-fi and futures research studies. [9] [10]

Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many specialists on AI have stated that reducing the risk of human extinction postured by AGI ought to be a worldwide top priority. [14] [15] Others discover the development of AGI to be too remote to present such a danger. [16] [17]

Terminology


AGI is also referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic smart action. [21]

Some scholastic sources reserve the term "strong AI" for computer system programs that experience sentience or consciousness. [a] In contrast, weak AI (or narrow AI) is able to fix one specific issue however does not have basic cognitive capabilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the exact same sense as humans. [a]

Related ideas include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is far more usually intelligent than humans, [23] while the concept of transformative AI associates with AI having a large influence on society, for instance, comparable to the agricultural or commercial transformation. [24]

A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, proficient, expert, virtuoso, and superhuman. For instance, a qualified AGI is specified as an AI that outshines 50% of skilled adults in a vast array of non-physical jobs, opensourcebridge.science and a superhuman AGI (i.e. an artificial superintelligence) is similarly defined but with a threshold of 100%. They consider large language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]

Characteristics


Various popular definitions of intelligence have been proposed. Among the leading propositions is the Turing test. However, there are other widely known meanings, and some researchers disagree with the more popular approaches. [b]

Intelligence traits


Researchers usually hold that intelligence is required to do all of the following: [27]

factor, use strategy, fix puzzles, and make judgments under unpredictability
represent knowledge, including good sense knowledge
strategy
find out
- interact in natural language
- if needed, integrate these skills in conclusion of any offered goal


Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) consider extra characteristics such as creativity (the ability to form novel mental images and ideas) [28] and autonomy. [29]

Computer-based systems that exhibit numerous of these abilities exist (e.g. see computational creativity, automated thinking, choice support system, robotic, evolutionary computation, intelligent agent). There is dispute about whether modern-day AI systems have them to an adequate degree.


Physical qualities


Other abilities are considered preferable in smart systems, as they may affect intelligence or aid in its expression. These include: [30]

- the capability to sense (e.g. see, hear, and so on), and
- the capability to act (e.g. move and control things, change location to explore, and so on).


This consists of the capability to find and react to hazard. [31]

Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. relocation and control objects, change area to check out, etc) can be preferable for some intelligent systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) might already be or end up being AGI. Even from a less optimistic perspective on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system is adequate, provided it can process input (language) from the external world in location of human senses. This interpretation lines up with the understanding that AGI has never ever been proscribed a particular physical personification and thus does not demand a capacity for locomotion or conventional "eyes and ears". [32]

Tests for human-level AGI


Several tests meant to verify human-level AGI have actually been thought about, consisting of: [33] [34]

The idea of the test is that the machine has to try and pretend to be a guy, by answering questions put to it, and it will only pass if the pretence is fairly convincing. A considerable portion of a jury, who ought to not be expert about machines, need to be taken in by the pretence. [37]

AI-complete problems


A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would need to carry out AGI, because the service is beyond the capabilities of a purpose-specific algorithm. [47]

There are numerous issues that have actually been conjectured to require general intelligence to resolve in addition to people. Examples include computer system vision, natural language understanding, and dealing with unanticipated circumstances while resolving any real-world issue. [48] Even a specific task like translation needs a machine to check out and write in both languages, follow the author's argument (reason), comprehend the context (knowledge), and consistently recreate the author's original intent (social intelligence). All of these problems require to be resolved simultaneously in order to reach human-level device efficiency.


However, much of these tasks can now be carried out by contemporary large language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on lots of criteria for checking out understanding and visual thinking. [49]

History


Classical AI


Modern AI research started in the mid-1950s. [50] The first generation of AI researchers were encouraged that artificial general intelligence was possible and that it would exist in simply a few decades. [51] AI pioneer Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]

Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might create by the year 2001. AI leader Marvin Minsky was a consultant [53] on the task of making HAL 9000 as practical as possible according to the consensus forecasts of the time. He said in 1967, "Within a generation ... the problem of developing 'expert system' will considerably be solved". [54]

Several classical AI jobs, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar job, were directed at AGI.


However, in the early 1970s, it became apparent that scientists had actually grossly undervalued the difficulty of the project. Funding companies became hesitant of AGI and put researchers under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "carry on a table talk". [58] In response to this and the success of expert systems, both industry and government pumped money into the field. [56] [59] However, self-confidence in AI stunningly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For the second time in 20 years, AI scientists who predicted the imminent achievement of AGI had actually been mistaken. By the 1990s, AI researchers had a track record for making vain pledges. They became hesitant to make forecasts at all [d] and avoided reference of "human level" synthetic intelligence for fear of being labeled "wild-eyed dreamer [s]. [62]

Narrow AI research


In the 1990s and early 21st century, mainstream AI achieved commercial success and scholastic respectability by concentrating on particular sub-problems where AI can produce proven outcomes and industrial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation industry, and research in this vein is greatly funded in both academic community and industry. As of 2018 [update], advancement in this field was thought about an emerging trend, and a fully grown phase was expected to be reached in more than ten years. [64]

At the millenium, lots of traditional AI scientists [65] hoped that strong AI might be established by integrating programs that fix various sub-problems. Hans Moravec wrote in 1988:


I am confident that this bottom-up path to synthetic intelligence will one day meet the traditional top-down route over half method, all set to supply the real-world competence and the commonsense understanding that has actually been so frustratingly evasive in reasoning programs. Fully smart devices will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]

However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:


The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper are legitimate, then this expectation is hopelessly modular and there is truly only one feasible route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we should even attempt to reach such a level, considering that it appears getting there would just amount to uprooting our signs from their intrinsic significances (thus simply lowering ourselves to the practical equivalent of a programmable computer system). [66]

Modern artificial basic intelligence research study


The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to please objectives in a wide range of environments". [68] This kind of AGI, identified by the capability to increase a mathematical definition of intelligence rather than show human-like behaviour, [69] was also called universal expert system. [70]

The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The very first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and including a number of visitor lecturers.


As of 2023 [update], a little number of computer scientists are active in AGI research, and many contribute to a series of AGI conferences. However, increasingly more scientists have an interest in open-ended knowing, [76] [77] which is the idea of allowing AI to continually discover and innovate like human beings do.


Feasibility


Since 2023, the development and possible achievement of AGI remains a topic of extreme debate within the AI neighborhood. While conventional agreement held that AGI was a far-off goal, current improvements have led some scientists and market figures to claim that early types of AGI might currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, of doing any work a man can do". This forecast stopped working to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century because it would require "unforeseeable and fundamentally unpredictable breakthroughs" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern computing and human-level synthetic intelligence is as wide as the gulf between current space flight and useful faster-than-light spaceflight. [80]

A more challenge is the absence of clarity in defining what intelligence entails. Does it require awareness? Must it display the capability to set objectives in addition to pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding required? Does intelligence require explicitly reproducing the brain and its particular professors? Does it need feelings? [81]

Most AI scientists believe strong AI can be attained in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, but that today level of development is such that a date can not precisely be anticipated. [84] AI specialists' views on the feasibility of AGI wax and subside. Four polls carried out in 2012 and 2013 suggested that the typical estimate amongst specialists for when they would be 50% confident AGI would arrive was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the experts, 16.5% answered with "never ever" when asked the same question but with a 90% self-confidence rather. [85] [86] Further current AGI development factors to consider can be discovered above Tests for validating human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year timespan there is a strong predisposition towards forecasting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will come about. [87]

In 2023, Microsoft scientists published a detailed evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might reasonably be deemed an early (yet still incomplete) variation of a synthetic general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outperforms 99% of human beings on the Torrance tests of imaginative thinking. [89] [90]

Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of basic intelligence has currently been accomplished with frontier models. They composed that reluctance to this view originates from 4 main reasons: a "healthy uncertainty about metrics for AGI", an "ideological commitment to alternative AI theories or strategies", a "dedication to human (or suvenir51.ru biological) exceptionalism", or a "concern about the financial implications of AGI". [91]

2023 also marked the emergence of big multimodal designs (large language designs efficient in processing or producing numerous methods such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the first of a series of designs that "invest more time thinking before they respond". According to Mira Murati, this capability to think before reacting represents a new, extra paradigm. It improves design outputs by spending more computing power when creating the answer, whereas the design scaling paradigm enhances outputs by increasing the model size, training information and training calculate power. [93] [94]

An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had attained AGI, stating, "In my opinion, we have actually already accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than most humans at many tasks." He likewise addressed criticisms that big language designs (LLMs) merely follow predefined patterns, comparing their learning procedure to the scientific technique of observing, assuming, and verifying. These declarations have actually sparked dispute, as they count on a broad and unconventional definition of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show exceptional versatility, they may not totally meet this standard. Notably, Kazemi's remarks came soon after OpenAI got rid of "AGI" from the regards to its partnership with Microsoft, prompting speculation about the company's tactical intents. [95]

Timescales


Progress in artificial intelligence has actually traditionally gone through periods of rapid development separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to produce space for more progress. [82] [98] [99] For example, the hardware readily available in the twentieth century was not sufficient to execute deep learning, which needs large numbers of GPU-enabled CPUs. [100]

In the intro to his 2006 book, [101] Goertzel says that price quotes of the time needed before a genuinely flexible AGI is built vary from ten years to over a century. Since 2007 [update], the consensus in the AGI research study community appeared to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have provided a vast array of opinions on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints found a bias towards predicting that the beginning of AGI would take place within 16-26 years for contemporary and historic forecasts alike. That paper has actually been slammed for how it classified viewpoints as expert or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the standard approach used a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was related to as the preliminary ground-breaker of the present deep knowing wave. [105]

In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old child in first grade. A grownup comes to about 100 usually. Similar tests were carried out in 2014, with the IQ score reaching an optimum value of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language design efficient in carrying out many varied jobs without particular training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]

In the very same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to adhere to their security standards; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind developed Gato, a "general-purpose" system efficient in performing more than 600 different tasks. [110]

In 2023, Microsoft Research published a research study on an early variation of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI designs and showed human-level performance in tasks spanning multiple domains, such as mathematics, coding, and law. This research stimulated a debate on whether GPT-4 could be considered an early, incomplete variation of synthetic basic intelligence, stressing the need for further expedition and evaluation of such systems. [111]

In 2023, the AI researcher Geoffrey Hinton specified that: [112]

The idea that this things could actually get smarter than people - a couple of individuals believed that, [...] But a lot of people thought it was way off. And I believed it was method off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.


In May 2023, Demis Hassabis similarly said that "The development in the last couple of years has been quite unbelievable", and that he sees no reason why it would decrease, expecting AGI within a decade and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would be capable of passing any test a minimum of in addition to humans. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI staff member, approximated AGI by 2027 to be "strikingly possible". [115]

Whole brain emulation


While the advancement of transformer models like in ChatGPT is thought about the most promising path to AGI, [116] [117] entire brain emulation can work as an alternative method. With whole brain simulation, a brain design is constructed by scanning and mapping a biological brain in detail, and then copying and replicating it on a computer system or another computational device. The simulation model need to be adequately devoted to the original, so that it behaves in practically the very same way as the original brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been discussed in expert system research [103] as a technique to strong AI. Neuroimaging technologies that might provide the essential detailed understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will appear on a comparable timescale to the computing power required to replicate it.


Early estimates


For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be required, provided the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by the adult years. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on a basic switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil looked at various price quotes for the hardware required to equal the human brain and adopted a figure of 1016 computations per second (cps). [e] (For comparison, if a "calculation" was equivalent to one "floating-point operation" - a measure utilized to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was achieved in 2022.) He utilized this figure to anticipate the required hardware would be offered at some point between 2015 and 2025, if the exponential growth in computer system power at the time of composing continued.


Current research study


The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually established a particularly in-depth and publicly available atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.


Criticisms of simulation-based methods


The artificial neuron design presumed by Kurzweil and used in numerous current artificial neural network applications is simple compared to biological neurons. A brain simulation would likely need to capture the detailed cellular behaviour of biological neurons, currently comprehended only in broad outline. The overhead presented by full modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would require computational powers several orders of magnitude bigger than Kurzweil's quote. In addition, the estimates do not account for glial cells, which are understood to contribute in cognitive processes. [125]

A basic criticism of the simulated brain approach originates from embodied cognition theory which asserts that human embodiment is a necessary element of human intelligence and is needed to ground significance. [126] [127] If this theory is correct, any totally functional brain design will need to incorporate more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, but it is unknown whether this would be adequate.


Philosophical point of view


"Strong AI" as specified in viewpoint


In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between two hypotheses about expert system: [f]

Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "awareness".
Weak AI hypothesis: An expert system system can (only) act like it thinks and has a mind and consciousness.


The first one he called "strong" since it makes a stronger declaration: it assumes something special has occurred to the machine that goes beyond those capabilities that we can test. The behaviour of a "weak AI" machine would be exactly similar to a "strong AI" device, however the latter would also have subjective conscious experience. This usage is likewise common in scholastic AI research study and textbooks. [129]

In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to imply "human level artificial general intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that consciousness is essential for human-level AGI. Academic philosophers such as Searle do not think that holds true, and to most artificial intelligence researchers the question is out-of-scope. [130]

Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it actually has mind - indeed, there would be no method to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the statement "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for granted, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two various things.


Consciousness


Consciousness can have numerous significances, and some aspects play considerable roles in science fiction and the ethics of expert system:


Sentience (or "sensational consciousness"): The capability to "feel" understandings or emotions subjectively, as opposed to the ability to factor about perceptions. Some thinkers, such as David Chalmers, utilize the term "awareness" to refer solely to phenomenal awareness, which is roughly comparable to sentience. [132] Determining why and how subjective experience arises is understood as the tough issue of consciousness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be conscious. If we are not mindful, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had achieved sentience, though this claim was widely contested by other professionals. [135]

Self-awareness: To have mindful awareness of oneself as a separate individual, particularly to be consciously familiar with one's own ideas. This is opposed to merely being the "topic of one's believed"-an os or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the exact same way it represents whatever else)-however this is not what people usually suggest when they use the term "self-awareness". [g]

These qualities have a moral measurement. AI sentience would offer rise to issues of welfare and legal defense, similarly to animals. [136] Other elements of consciousness related to cognitive abilities are likewise appropriate to the idea of AI rights. [137] Determining how to integrate sophisticated AI with existing legal and social structures is an emergent issue. [138]

Benefits


AGI might have a wide array of applications. If oriented towards such goals, AGI might assist reduce numerous issues worldwide such as cravings, poverty and illness. [139]

AGI might enhance performance and efficiency in a lot of tasks. For example, in public health, AGI might accelerate medical research, notably versus cancer. [140] It could take care of the elderly, [141] and equalize access to rapid, high-quality medical diagnostics. It might use fun, cheap and customized education. [141] The need to work to subsist might become obsolete if the wealth produced is effectively redistributed. [141] [142] This likewise raises the concern of the location of people in a radically automated society.


AGI could likewise assist to make reasonable choices, and to anticipate and prevent catastrophes. It could also assist to profit of potentially devastating innovations such as nanotechnology or climate engineering, while avoiding the associated dangers. [143] If an AGI's primary objective is to prevent existential disasters such as human termination (which might be tough if the Vulnerable World Hypothesis turns out to be true), [144] it might take measures to drastically lower the dangers [143] while minimizing the effect of these procedures on our lifestyle.


Risks


Existential risks


AGI may represent multiple kinds of existential threat, which are threats that threaten "the early termination of Earth-originating smart life or the irreversible and drastic destruction of its potential for desirable future advancement". [145] The threat of human extinction from AGI has actually been the topic of lots of debates, but there is likewise the possibility that the advancement of AGI would cause a permanently problematic future. Notably, it might be used to spread and preserve the set of worths of whoever establishes it. If mankind still has ethical blind spots similar to slavery in the past, AGI might irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI might assist in mass monitoring and brainwashing, which could be utilized to produce a stable repressive around the world totalitarian routine. [147] [148] There is also a threat for the devices themselves. If devices that are sentient or otherwise deserving of moral consideration are mass created in the future, engaging in a civilizational course that forever disregards their well-being and interests could be an existential disaster. [149] [150] Considering how much AGI could enhance humanity's future and assistance reduce other existential risks, Toby Ord calls these existential threats "an argument for continuing with due care", not for "deserting AI". [147]

Risk of loss of control and human termination


The thesis that AI presents an existential danger for humans, and that this risk needs more attention, is questionable however has been endorsed in 2023 by numerous public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed extensive indifference:


So, facing possible futures of incalculable benefits and dangers, the experts are surely doing whatever possible to guarantee the finest result, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll get here in a few years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]

The prospective fate of humanity has actually in some cases been compared to the fate of gorillas threatened by human activities. The contrast states that greater intelligence permitted humanity to dominate gorillas, which are now vulnerable in manner ins which they might not have actually anticipated. As a result, the gorilla has ended up being an endangered species, not out of malice, but merely as a civilian casualties from human activities. [154]

The skeptic Yann LeCun considers that AGIs will have no desire to control humanity and that we must take care not to anthropomorphize them and interpret their intents as we would for human beings. He stated that individuals will not be "wise adequate to design super-intelligent machines, yet unbelievably silly to the point of giving it moronic goals with no safeguards". [155] On the other side, the concept of critical merging suggests that almost whatever their goals, intelligent agents will have factors to try to survive and get more power as intermediary steps to attaining these goals. And that this does not require having emotions. [156]

Many scholars who are worried about existential danger advocate for more research study into resolving the "control issue" to answer the concern: what types of safeguards, algorithms, or architectures can programmers execute to maximise the possibility that their recursively-improving AI would continue to behave in a friendly, rather than harmful, manner after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which could cause a race to the bottom of safety preventative measures in order to launch items before competitors), [159] and using AI in weapon systems. [160]

The thesis that AI can pose existential danger also has critics. Skeptics typically state that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other concerns connected to existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of people outside of the innovation industry, existing chatbots and LLMs are currently viewed as though they were AGI, resulting in more misunderstanding and worry. [162]

Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an unreasonable belief in an omnipotent God. [163] Some scientists think that the communication campaigns on AI existential danger by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to inflate interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and researchers, provided a joint statement asserting that "Mitigating the threat of termination from AI should be a worldwide concern together with other societal-scale threats such as pandemics and nuclear war." [152]

Mass unemployment


Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of employees may see a minimum of 50% of their tasks affected". [166] [167] They consider office employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI might have a much better autonomy, ability to make decisions, to interface with other computer system tools, but also to manage robotized bodies.


According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]

Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or most individuals can end up badly bad if the machine-owners effectively lobby against wealth redistribution. So far, the pattern appears to be toward the second choice, with innovation driving ever-increasing inequality


Elon Musk considers that the automation of society will require federal governments to embrace a universal fundamental income. [168]

See likewise


Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain
AI impact
AI safety - Research location on making AI safe and beneficial
AI alignment - AI conformance to the desired goal
A.I. Rising - 2018 film directed by Lazar Bodroža
Expert system
Automated maker knowing - Process of automating the application of maker learning
BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General video game playing - Ability of synthetic intelligence to play various games
Generative expert system - AI system efficient in generating content in response to prompts
Human Brain Project - Scientific research task
Intelligence amplification - Use of details innovation to augment human intelligence (IA).
Machine principles - Moral behaviours of manufactured devices.
Moravec's paradox.
Multi-task learning - Solving several maker finding out jobs at the very same time.
Neural scaling law - Statistical law in maker learning.
Outline of expert system - Overview of and topical guide to expert system.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or kind of expert system.
Transfer knowing - Machine knowing method.
Loebner Prize - Annual AI competition.
Hardware for expert system - Hardware specifically designed and enhanced for expert system.
Weak synthetic intelligence - Form of synthetic intelligence.


Notes


^ a b See below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the article Chinese room.
^ AI creator John McCarthy writes: "we can not yet identify in basic what kinds of computational treatments we wish to call smart. " [26] (For a conversation of some definitions of intelligence utilized by expert system researchers, see approach of artificial intelligence.).
^ The Lighthill report specifically criticized AI's "grandiose objectives" and led the dismantling of AI research study in England. [55] In the U.S., DARPA became identified to fund just "mission-oriented direct research, instead of basic undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a great relief to the rest of the employees in AI if the creators of brand-new general formalisms would reveal their hopes in a more safeguarded kind than has actually in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As specified in a basic AI textbook: "The assertion that devices might possibly act wisely (or, perhaps much better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that devices that do so are in fact thinking (instead of imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to guarantee that synthetic general intelligence advantages all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is producing artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were recognized as being active in 2020.
^ a b c "AI timelines: What do specialists in artificial intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI leader Geoffrey Hinton quits Google and alerts of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad stars from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The genuine danger is not AI itself however the way we release it.
^ "Impressed by expert system? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential threats to humankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last invention that humanity requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of termination from AI need to be a worldwide concern.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals caution of risk of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing devices that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no factor to fear AI as an existential risk.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the complete series of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is changing our world - it is on everyone to make certain that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart characteristics is based upon the subjects covered by significant AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reassessed: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of tough examinations both AI versions have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested checking an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers avoided the term synthetic intelligence for worry of being considered as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite development in maker intelligence, synthetic basic intelligence is still a significant difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not become a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A study of skilled viewpoint. In Fundamental problems of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yuji

Yorumlar